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Fatty acid-binding protein (FABP) has been isolated from rat liver cytosol by two steps of
gel-permeation chromatography on Sephadex G-75 and Sephacryl S-100 after ammonium
sulfate precipitation. FABP fraction was eluted as two well-separated peaks, fractions A
and B, by reversed-phase high-performance liquid chromatography (HPLC). The struc-
tural difference between the two fractions was investigated by lysyl endopeptidase
digestion followed by reversed-phase HPLC of the digests, which identified a peptide
corresponding to residues 58 through 78 as the modified peptide. Matrix-assisted laser-
desorption-ionization mass spectrometry and other chemical analyses of the peptides
established the modification in fraction A as cysteine-thiolation at cysteine-69. This was
confirmed by reduction and reoxidation of the peptide and the parent molecules. The
modification did not affect binding of fluorescent derivatives of fatty acids. However, the
modified species was more susceptible to proteolysis by bovine spleen cathepsin B and
cathepsin D than the unmodified species. The presence of a relatively large amount of
cysteine (but not of glutathione) mixed-disulfide form of FABP suggests some physiological
role of this modification related to the redox status of the cell [Thomas, J.A., Poland, B., and
Honzatko, R. (1995) Arch. Biochem. Biophys. 319,1-9], and accounts, at least in part, for the
extensive heterogeneity of liver FABP.

Key words: cysteine-thiolation, fatty acid-binding protein, mixed disulfide, post-transla-
tional modification, proteolysis.

Fatty acid-binding proteins (FABP) are low-molecular- liver FABP with pi 4.5 and 6.5 are interconvertible by
mass cytosolic proteins widely expressed in mammalian delipidation and recombination of fatty acids {32). We have
tissues, such as liver (1), heart (2), stomach (3), intestine shown that a part of this protein lacks the ammo-terminal
(4), skeletal muscle (5), brain (6), peripheral myelin (7), acetyl group (33) and that the acidic fraction of FABP
adipose tissue (8), skin (9, 10), mammary glands (11), and contains a molecular species having an isoaspartyl-105
testis (12, 13). They are also found in other vertebrates residue as a consequence of deamidation and peptide
(14-17) and invertebrates (18-22), suggesting a key role rearrangement at asparagine-105 (34). We also found a
in animals. Most of them bind long chain fatty acids rather mixed disulfide form of rat liver FABP with glutathione at
tightly and, therefore, a role in intracellular transport of cysteine-69 (35). We examined the effect of this modifica-
free fatty acids has been assumed for them (for recent tion on the fatty acid-binding ability of the protein by
reviews on FABP, see Refs. 23-27). However, some of preparing the mixed disulfide in vitro and found that the
these proteins have little affinity for long chain fatty acids, modification decreased the affinity of the protein for
and their true ligands have not been identified yet (for unsaturated, but not saturated, fatty acids (36). Recently,
example, Ref. 28). Spener and coworkers (37) interpreted the observed

Liver FABPs are somewhat different from FABPs of complexity of molecular species of bovine liver FABP in
other tissues in their ability to bind various natural and terms of a combination of mixed disulfide formation with
synthetic organic molecules other than fatty acids (29). cysteine and the presence of two molecular variants having
They include bilirubin, aminoazo-dyes, bromosulfophth- asparagine and aspartic acid at residue 103. Similarly,
alein, hypolipidemic drugs (30), and 8-anilinonaphthalene- charge-isoforms of bovine heart FABP are originate from
1-sulfonic acid (32). Rat liver FABP exhibits many charge- Asn/Asp replacement at residue 98; the forms are coded by
isoforms in ion-exchange chromatography and isoelectro- distinct mRNAs (38). Since previous purification proce-
focusing. It has been shown that two major forms of rat dures of rat liver FABP included anion-exchange chro-

— matography on DEAE-cellulose (32, 33), which gives
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and identified the molecular species generated by mixed
disulfide formation with cysteine. The modified species
exhibited similar fatty acid-binding properties, but showed
increased protease susceptibility. The significance of post-
translational modification is also discussed.

MATERIALS AND METHODS

Materials—Lysyl endopeptidase from Achromobacter
sp. was a product of Wako Pure Chemicals, Osaka. Cathep-
sins B and D (bovine spleen) were purchased from Sigma
Chemical Company, St. Louis. Sephadex G-75 (medium),
Sephacryl S-100, and Resource RPC columns were from
Pharmacia, Uppsala. The octadecylsilane (TSK ODS-
120T) and octylsilane (Capcell Pak C8) columns for HPLC
were from Tosoh and Shiseido, respectively.

Isolation of Rat Liver FABP—All operations were
conducted at 4*C. The liver (60 g) from male rats (Sprague-
Dawley) was homogenized with a double volume (v/w) of
0.25 M sucrose, 0.1 M Tris-HCl buffer, pH 8, and centri-
fuged at 10,000 Xg for 15 min. The supernatant was
further centrifuged at 105,000 Xg for 90 min. Ammonium
sulfate was added to 50% saturation and the supernatant
was dialyzed against water and then against 10 mM Tris-
HCl, pH 8.5. The dialyzed solution was concentrated to 15
ml by ultrafiltration and applied to a column of Sephadex
G-75 (5X90 cm) equilibrated with 10 mM Tris-HCl, pH
8.5. Fractions containing FABP were detected by SDS-
PAGE, pooled and concentrated to 3 ml by ultrafiltration.
Second gel-filtration was performed on a Sephacryl S-100
column (3 X 100 cm, 30 mM Tris-HCl, pH 8.5). Peak frac-
tions containing FABP were pooled.

HPLC of Rat Liver FABP—A column of octylsilane
(4.6 X150 mm, Capcell Pak C8, Shiseido) was equilibrated
with 1% acetonitrile in 0.05% trifluoroacetic acid and
developed with a linear gradient of acetonitrile to 75%. For
preparative purposes, a polymer-based reversed-phase
column (Resource RPC, 7 X100 mm, Pharmacia) was used
with the same elution system. Protein was detected by
measuring the abaorbance at 215 nm.

Protease Digestion and Peptide Mapping—Lyophilized
protein (80 fig) was denatured in 50 //I of 6 M guanidinium
chloride in 20 mM sodium phosphate, pH 7.2, for 1 h at
50'C. After dilution with 100/zl of water, the protein was
digested with 5 fig of lysyl endopeptidase for 6 h at 25"C.
The digest was analyzed by reversed-phase HPLC using a
linear acetonitrile concentration gradient to 99% in 0.05%
trifluoroacetic acid.

Amino Acid Analysis—Samples were hydrolyzed with
5.7 N HC1 for 22 h at 110'C in evacuated tubes, and
analyzed on a Hitachi 835 amino acid analyzer. Protein-
bound cysteine or glutathione was quantified by amino acid
analysis as the corresponding sulfonic acid after oxidation
with performic acid (39). Cysteic acid and glutathione
sulfonic acid, which are eluted together at the flow-through
position in ordinary amino acid analyzers, were analyzed
with a modified amino acid analyzer equipped with an anion
exchanger (3013N, Hitachi) column using 0.2 M citric acid
as an eluant (35).

Mass Spectrometry—A matrix-assisted laser-desorption
time-of-flight mass-spectrograph, Shimadzu-Kratos
MALDI-EU was used with sinapinic acid and insulin (Mr =
5,735) as the matrix and calibration standard, respectively.

Reduction and Mixed Disulfide Formation—Peptides
(2.5 fiM) were reduced with 10 mM dithiothreitol for 1 h at
50*C. Protein fractions (13 //M) were reduced with 50 mM
dithiothreitol for 2.5 h at room temperature. Protein mixed
disulfide was prepared by incubating the protein (5 fiM)
with either cystine (2 mM) or oxidized glutathione (40
mM) for 1 h at 37'C and then overnight at 4'C. All reactions
were carried out in 30 mM Tris-HCl buffer, pH 8.5 (36).
Products were analyzed by HPLC as described above.

Fatty Acid-Binding Assay—Proteins were defatted with
Lipidex 1000 according to the method of Glatz and Veer-
kamp (40), Fluorescent derivatives of saturated and
unsaturated fatty acid, 12-(9-anthroyloxy)stearic acid and
12-(9-anthroyloxy)oleic acid, were used for measurement
of interaction with FABP (41).

Digestion of FABP with Cathepsin B and Cathepsin D—
Bovine spleen cathepsin B (Sigma, 28 units/mg protein)
was activated with 2 mM dithiothreitol in 10 mM phos-
phate buffer containing 2 mM EDTA for 10 min at 25'C.
The two forms of FABP (60 ̂ M in 50 mM sodium acetate
buffer, pH5.0, containing 1 mM EDTA; 100/d, 84 fig
protein) were separately digested with cathepsin B (0.2
unit, 7 fig protein) at 25"C. At appropriate time intervals,
10 //I aliquots were withdrawn and analyzed for the re-
maining proteins by HPLC on the octylsilane column.
Digestion with cathepsin D was carried out in the same
fashion as cathepsin B digestion except for omission of
EDTA in the buffer. Thirty micrograms of bovine spleen
cathepsin D (Sigma, 8.5 units/mg protein) was used.

RESULTS AND DISCUSSION

Purification of Total FABP Fraction—Figure 1 shows
elution patterns of gel-filtration on Sephadex G-75 (Fig.
1A) and on Sephacryl S-100 (Fig. IB). The second gel-
filtration afforded pure FABP fraction (peak 1 in Fig. IB) as
judged from SDS-PAGE and amino acid analysis. One of
the major contaminants in the FABP fraction of G-75,
identified as ubiquitin by SDS-PAGE and amino-terminal
sequence analysis (data not shown), could be removed by
the second gel-filtration on Sephacryl. The smaller peak
(peak 2 in Fig. IB) behind the FABP peak was identified as
essentially pure acyl CoA-binding protein (diazepam bind-
ing inhibitor, 42) by SDS-PAGE, reversed-phase HPLC,
amino acid analysis, and partial sequence analysis of the
lysyl endopeptidase peptides (data not shown). Therefore,
the present method is very simple and useful for simultane-
ous purification of the two carrier proteins involved in lipid
metabolism.

HPLC of Total FABP Fraction—Purified FABP fraction
was separated into two peaks, fractions A and B, on the
octylsilane column (Fig. 2). The amino acid compositions of
the two fractions were essentially identical (data not
shown). To obtain a sufficient amount of the smaller
fraction, preparative reversed-phase HPLC was performed
on a Resource-RPC column, which resulted in a similar
separation.

Peptide Mapping and Structural Analysis—Fractions A
and B were digested with lysyl endopeptidase and analyzed
by reversed-phase HPLC on an octadecylsilane column.
Figure 3, A and B, shows the peptide maps of the two
fractions, A and B, respectively. As can be seen from the
figures, a striking difference in the elution position of
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Fig. 1. Separation of rat liver
fatty acid-binding protein
(FABP) and acyl CoA-binding
protein (diazepam binding in-
hibitor) by gel-filtration. A: A
Sephadex G-75 column (5x100
cm) was equilibrated with 10 mM
Tris-HCl, pH 8.5, and eluted at a
flow rate of 40 ml/h. Fractions 36
through 51 (indicated by a bar)
were pooled and concentrated for
second gel-filtration. B: A Sepha-
cryl S-100 column (3x90 cm) was
equilibrated and eluted with 30
mM Tris-HCl, pH 8.5, at a flow rate
of 20 ml/h. Fractions containing
FABP (fractions 48 to 54, peak 1)
and acyl CoA-binding protein (frac-
tions 58 to 64, peak 2) are indicated

by bars. Elution was monitored by measuring the absorbance at 280 nm.
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Fig. 2. Reversed-phase HPLC of rat liver FABP on an octyl-
silane column. A portion of the FABP fraction was analyzed on an
octylsilane column (4.6x150 mm, Capcell Pak C,, Shiseido). An
acetonitrile gradient in dilute trifluoroacetic acrid was used for elution.
Proteins were detected by measuring the absorbance at 215 nm.

peptide K10 was observed. The amino acid composition of
K10 (not shown) indicated that this corresponds to residues
58 through 78, except for the low recoveries of cysteine
owing to destruction during hydrolysis. Since this peptide
includes the sole cysteine residue (cysteine-69) of the
protein, mixed disulfide formation was considered for the
modified protein. Figure 4 shows the elution pattern of both
peptides by HPLC after reduction with 5mM dithio-
threitol. After this treatment, the elution position of A-K10
sifted to the position of B-K10, indicating that some thiol
compound was removed from peptide A-K10 by reduction,
whereas the position of B-K10 was unchanged by this
treatment. The nature of this thiol compound was inves-
tigated by matrix-assisted laser desorption-ionization mass
spectre-metric analysis. The mass value of B-K10 was
estimated to be 2,409, the value expected from the se-
quence data of this region (2,408), assuming the observed
ion to be [M + H]+ . On the other hand, the molecular mass
of A-K10 (2,528) was larger by 119 mass units than that of
B-K10. This difference can be explained by assuming
mixed disulfide formation with free cysteine (Le., + cys-
t e ine -2H= 121.16-2= 119.16).
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Fig. 3. Peptide mapping of fractions A and B of rat liver
FABP. Protein samples (80//g) were denatured in 50//I of 6 M
guanidinium chloride in 20 mM sodium phosphate buffer, pH 7.2, for
1 h at 50"C. After 3-fold dilution with water, the proteins were
digested with lysyl endopeptidase (5 us) f° r 6 h at room temperature.
The digests were analyzed by reversed-phase HPLC on an octadecyl-
silane column (4.6x250mm, TSK ODS 120T, Tosoh). Arrows
indicate a peptide (K10) that is different in the two fractions of FABP.

This was confirmed by the liberation of free cysteic acid
from fraction A after performic acid oxidation. To obtain a
quantitative result, the amino acid analyzer was modified
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by using anion exchange resin (3013N, Hitachi). As can be
seen from Fig. 5, cysteic acid was essentially the sole amino
acid liberated from fraction A, and glutathione sulfonic acid
was barely detectable. In this way, 0.85 mol of cysteic acid
was found per mol of fraction A protein.

The above results indicated that rat liver FABP contains
a molecular species having a cystine residue at position 69.
This modification causes no net charge difference on the
protein at around neutral pH and, this may be the reason
why the modified species could not be separated by ion-
exchange chromatography of rat liver FABP. When the
total FABP fraction was reduced with dithiothreitol, it was
eluted at the elution position of fraction B (Fig. 6), although
a small fraction remained at the original position, suggest-
ing the presence of another modified form in fraction A;
alternatively, this may have been due to incomplete reduc-
tion. Similarly, when fraction B was incubated with either
2 mM cystine or 40 mM glutathione in 30 mM Tris-HCl,
pH 8.5 (36) and analyzed by HPLC, products were eluted
at the elution position of fraction A (figures not shown).
These results confirmed the cysteine-thiolation of fraction
A. It is remarkable that addition of a single cysteine
resulted in separation of the two forms of a 127-residue
protein. A previous report on the separation of molecular
isoforms of bovine liver FABP was based on preparative
slab-gel isoelectrofocusing (37). The present procedure
seems effective to isolate or quantify the mixed disulfide

form of the protein.
The amount of cysteine-conjugated FABP was estimated

to be about 20% of the total FABP as judged from the
elution profile on HPLC. This rather large proportion of
cysteine-conjugated form is unexpected, since a previous
investigation using anti-FABP antibody to collect total
FABP detected only a small amount of glutathione-con-
jugated form (36). We can not readily explain this discrep-
ancy in the nature and extent of the modification, but the
result was fairly reproducible in several independent
preparations. It is possible that the modification is highly
sensitive to the status of individual animals, or due to the
difference in rat strain (i.e., Sprague-Dawley vs. Wistar in
the former experiment), although the possibility of some
artifact arising during the preparation may not be com-
pletely excluded.

The physiological significance of this post-translational
modification is not evident at present. We have demon-
strated that mixed disulfide formation with glutathione
caused a small, but distinct decrease of affinity for unsatu-
rated fatty acids (36). This time we also examined the
binding properties of the cysteine-thiolated protein by
using fluorescent derivatives of saturated and unsaturated
fatty acid, 12-(9-anthroyloxy)stearic acid and 12-(9-an-
throyloxy)oleic acid after delipidation with Lipidex (40)
and compared them with those of the unmodified protein.
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Fig. 4. Effect of reduction with dithiothreitol on the elution
position of peptide K10 derived from fractions A and B of rat
liver FABP. Peptides (2.5/iM) were incubated with or without 10
mM dithiothreitol in 30 mM Tris-HCl, pH 8.5, for 1 h at 50'C and
analyzed by HPLC as described in the legend to Fig. 3. A, K10 of
fraction A; B, reduced K10 of fraction A; C, K10 of fraction B; D,
reduced K10 of fraction B.
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Fig. 5. Amino acid analysis of FABP fraction A oxidized by
performic acid. Fraction A (1.7 nmol) was oxidized with performic
acid and directly analyzed by a Hitachi 835 amino acid analyzer
equipped with an anion-exchanger column (Hitachi 3013N, 2.6 x 150
mm). The column was equilibrated and eluted with 0.2 N citric acid
(23) and amino acids were detected by measuring the absorbance at
570 nm after ninhydrin reaction. A, analysis of oxidized fraction A; B,
5 nmol each of standard cysteic acid (a) and glutathione sulfonic acid
(b).
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912 T. Sato et al.

Under the experimental conditions used, no significant
difference in binding properties was detected between the
unmodified and cysteine-modified species (Fig. 7). This
result suggests that the modification does not modulate
binding affinity, but the fluorescent analogs of fatty acids,
with a bulky chromophore, may not be appropriate to
assess small differences.

Post-translational modifications with glutathione or
cysteine have been found for some other intra- and extra-
cellular proteins (for a recent review, see Ref. 43), and
interpreted as a physiological process controlling protein
function. For example, rat liver cystatin is inactivated upon
S-thiolation with glutathione (44). It was also reported that
glutathione-modified isoforms of chicken triosephosphate
isomerase (45) or bovine lens aldose reductase (46) are
readily degraded by proteases. Some investigators recog-
nized a dramatic circadian variation in the amount of rat
liver FABP (47), though conflicting results were obtained
by others (48). They reported that during a 12-h dark, 12-h
light cycle, a 7-fold increase in FABP (i.e. from 1 to 7 mg/
g of liver) occurred in the dark period, peaking at the
midpoint and returning to basal levels by the beginning of
the light period. This implies a rapid turnover (47) of rat
liver FABP, and some signal for degradation might be
involved. This view may be supported by the following

20 30 40 50

ElutionTime (min)

Fig. 6. Effect of reduction on HPLC profile of rat liver FABP.
Total FABP fraction from Sephaciyl SlOO (13//M) was incubated
with or without 50 mM dithiothreitol in 30 mM Tris-HCl for 2 h at
room temperature. Conditions for HPLC were similar to those in the
legend to Fig. 2. A, total FABP fraction; B, FABP fraction reduced by
dithiothreitol.

observation. When S-thiolated and unmodified forms were
incubated with bovine spleen cathepsin B, the S-thiolated
form was more rapidly digested than the unmodified form
as determined by HPLC of the digests (Fig. 8). A similar
result was obtained upon digestion with cathepsin D (not
shown). The fractions of S-thiolated and unmodified forms
digested by cathepsin D after 24 h were 35 and 25%,
respectively, and 53 and 40% after 50.5 h of digestion. The
difference between the two forms was somewhat smaller
than that in the case of cathepsin B digestion. It is remark-

200 r

8 10
Anthroyloxy Fatty Acid

Fig. 7. Binding of fluorescent derivatives of saturated and
unsaturated fatty acids to fractions A and B of rat liver FABP.
Samples were defatted with Lipidex 1000. A fixed amount of FABP
fractions (1 //M in 0.1 M Tris-HCl, pH 8.5) was incubated with
increasing concentrations of 12-(9-anthroyloxy)stearic or -oleic acid
at 25'C. Fluorescence intensity at 440 nm during excitation at 360 nm
was measured. Solid symbols, fraction A; open symbols, fraction B.
Circles indicate fluorescence of 12-(9-anthroyloxy)stearic acid and
squares that of 12-(9-anthroyloxy)oleic acid.

100<

20 30
Time (h)

Fig. 8. Proteolysis of fractions A and B of rat liver FABP by
cathepsin B. Samples were defatted with Lipidex 1000. The two
forms of FABP (60 ^M in 50 mM sodium acetate buffer, pH5.0,
containing 1 mM EDTA; 100 //I, 84 fig protein) were digested with
cathepsin B (0.2 unit, 7 /jg protein) at 25C. At appropriate time
intervals, 10^1 aliquots were withdrawn and the remaining FABP
was quantified by HPLC as described in the legend to Fig. 2. Solid
circles, fraction A; open circles, fraction B.
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able that the S-thiolation enhances susceptibility to pro-
teases belonging to different classes of the proteolytic
enzymes, i.e., cathepsin B as a cysteine protease and
cathepsin D as an aspartic protease. It seems that the
modification resulted in conformational instability of the
protein, leading to increased proteolytic susceptibility. In
the liver cell, however, tagging with cysteine or glutathione
might act as a recognition signal for the degradation
pathway, rather than directly conferring susceptibility
upon the protein, as suggested by Francis and Ballard {49).
Another possible interpretation is that protein-thiolation
may be a protective process against the oxidation of thiol
groups in proteins, since protein S-thiolation is a mild
oxidation of essential thiols and reversible under physio-
logical conditions (43). Although the free thiol group in
FABP does not appear to be essential for fatty acid-binding
activity (50), the protein itself may be quantitatively
significant in the protection of functional thiols of other
proteins from oxidative damage because of the extremely
high concentration of FABP in the liver cell.
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Corporation for mass gpectrometric analysis. S.O. is grateful to Dr.
Tokuji Ikenaka, Professor Emeritus at Osaka University, for his
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